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Abstract
In this paper we examine an alternative formulation of the gauge principle
in which the emphasis is shifted from the symmetry transformations to their
generators. We show that the gauge principle can be entirely reformulated in
terms of promoting constants of motion—which generate rigid symmetries—
to constraints—which generate gauge symmetries. In our exposition we first
explain the basic philosophy on mechanical systems, and then with the help of
De Donder–Weyl formalism we extend our scenario also to a field-theoretical
setting. To illustrate this, we demonstrate our method in numerous examples,
including the massive relativistic particle, the Nambu–Goto closed string and
relativistic field theory.

PACS numbers: 11.15.Kc, 11.30.Fs

1. Introduction

The gauge principle (see [1] for a historical account) is a basic ingredient of modern theoretical
physics, particularly in quantum field theory. It is not necessary to elaborate much on this
undisputable fact. A quick presentation of its main idea is that by gauging a rigid symmetry
one must pay a ‘price’: that of introducing a new field, the gauge field, which geometrically
represents a principal connection on a principal bundle. This ‘price’ has turned out to be an
unexpected bonus which has irrevocably changed the theoretical landscape in physics.

In this paper we propose to revisit the gauge principle from the point of view of
enforcing constants of motion as constraints. We should, however, forewarn that our
subsequent considerations will be purely classical, so particularly, ordering issues will be
outside our scope. Similarly we will assume that Lagrangian/Hamiltonian systems are
equivalent when they produce identical equations of motion (EOM). This ‘on mass-shell’
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(i.e. the classical path) identification is clearly not satisfactory from a quantum point of view
where also ‘off mass-shell’ behavior non-trivially contributes into, say, transitional amplitudes.
Grassmann variables will also not be considered, since that complication is a straightforward
generalization.

It is well known that theories—derived form a variational principle—which exhibit
gauge invariance must be described by constrained systems. With these two words we
refer to the framework put forward by Rosenfeld [2, 3], Dirac [4, 5] and Bergmann [6–8],
who, independently, laid the ground to deal with such systems. In particular Rosenfeld’s
contribution, which has been overlooked for a long time, has recently resurfaced thanks to the
work of Salisbury and it is discussed in [2]. The constrained systems are characterized by
Lagrangians whose Hessian matrix with respect to the velocities is singular, thus preventing
the Legendre map (LM) from tangent bundle (i.e. positions and velocities space) to cotangent
(i.e. space of positions and momenta, or phase space) from being invertible. It is precisely
the singularity of the Hessian matrix which makes room for the possible presence of gauge
freedom. Eventually, the picture obtained in phase space is that we have a (non-uniquely
defined) canonical Hamiltonian H, and a set of primary constraints Ca that are just the
consequence of the non-invertibility of the LM. Thus the dynamics in phase space is given by
the Dirac Hamiltonian

HD := H + λaCa, (1)

with λa being a set of in principle arbitrary Lagrange multipliers, together with the requirement
that motions must satisfy the primary constraints

Ca = 0. (2)

Here we will not mention the details of the theory of constrained systems, but simply
refer to the literature [9–12]. What we want to emphasize is that, given the structure of the
dynamics in phase space, one could think of a process of gauging a regular theory by just
starting with an ordinary Hamiltonian H and a set of functions Ca that are to be enforced as
constraints. Then we could define a new dynamics by equations (1) and (2), which hopefully
would describe a gauge theory.

In general, this program is bound to fail because the constraints must have a certain
degree of compatibility with the generator HD of the dynamics. Geometrically, one needs the
dynamical trajectories to be tangent to the surface defined by the constraints. In general, one
expects this requirement to eventually end up with the appearance of new constraints as well
as the determination of some of the Lagrange multipliers. But if H and Ca are chosen too
arbitrarily, the most likely outcome is that there will be no set of λa’s that keeps the dynamical
trajectories tangent to the constraint’s surface.

But there is a neat exception, with plenty of interest: if we choose the would-be constraints
as some of the constants of motion for H, then full compatibility is easy to achieve. This is
the case we will explore. We consider a Hamiltonian for a regular theory—obtained from
a Lagrangian in tangent space through an invertible LM—and a set of constants of motion
Ca satisfying {Ca,H } = 0 and closing a certain algebra {Ca,Cb} = cc

abCc with cc
ab being

structure constants. For the sake of simplicity, we restrict ourselves to constants of motion
without explicit time dependence, i.e. to scleronomic constants of motion. We then declare
that the new dynamics is governed by the Dirac Hamiltonian (1) under the condition that the
constants of motion are enforced now as constraints (2).

To check that we are indeed on the right track, we must verify that with these conditions
the theory defined by (1) supports gauge symmetries and that they act on the ‘matter’ fields
as they should, just generalizing the action of the former rigid symmetries. Once this check
is done, we can explore the new gauge theory and its dynamical consequences, because the
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dynamics is expected to undergo important changes after the gauging of the rigid group of
symmetries. Finally we can further modify the theory in a natural way by introducing gauge-
invariant kinetic terms for the Lagrange multipliers. The full-fledged gauge theory is then
obtained, with the new nontrivial interaction terms allowed by the gauge principle.

Our paper is organized as follows. In section 2 we formulate our basic strategy using
the language of mechanics. Namely, we show how to construct a gauge-invariant theory by
promoting constants of motion to constraints. We also stress an intimate connection with the
mathematical structure of non-Abelian Yang–Mills theory [13]. In section 3, we complete
the theoretical setup. Examples in mechanics are given in section 4 and the relativistic field
theory is dealt with in section 5, where the key role of the De Donder–Weyl formalism is made
manifest. We devote section 6 to the case of the closed bosonic string and use our approach to
obtain world sheet general covariance. Finally, we conclude in section 7 with a brief summary
of our results and outlook.

2. The new gauge theory

We start by considering a Hamiltonian for a regular theory together with a set of scleronomic
constants of motion Ca satisfying {Ca,H } = 0 and closing an algebra {Ca,Cb} = cc

abCc. Now
we will prove that when Ca are enforced now as constraints, then this new theory is indeed a
gauge theory. The simplest way to prove it is by defining the extended Lagrangian (indices
for vector components are normally suppressed)

Le(q, p, q̇, ṗ, λ) = pq̇ − H(q, p) − λaCa(q, p), (3)

and proving that it has gauge transformations. Note first that the EOM for (3) coincide with
those derived from the Dirac Hamiltonian (1) and the constraints (2) (an advantage of the
Lagrangian formulation is that all the dynamics is encoded in a single function). Note also
that we have enlarged the configuration space with the multipliers λa as new variables. We
will prove that indeed (3) has Noether gauge symmetries. Since the constants of motion are
the Noether generators of the rigid symmetries, it is reasonable to expect that the generator of
the would-be canonical gauge transformations can be written as G ≡ εa(t)Ca , with εa being
a set of arbitrary time-dependent functions. We will prove now that indeed G generates gauge
transformations. The corresponding variations can be written as

δεq
i = {qi,G}, δεpi = {pi,G}, (4)

and the variations of the multipliers will be determined below by the condition that, under the
variations thus defined, the Lagrangian Le is quasi-invariant, i.e.

δεLe = d

dt
F, (5)

for some F linear in ε and its derivatives. Indeed,

δε(pi q̇
i) = piδεq̇

i + q̇iδεpi = −ṗiδεq
i + q̇iδεpi +

d

dt
(piδεq

i)

= −εa(t)
∂Ca

∂pi

ṗi − εa(t)
∂Ca

∂qi
q̇i +

d

dt

(
piε

a(t)
∂Ca

∂pi

)

= ε̇a(t)Ca +
d

dt

[
εa(t)

(
pi

∂Ca

∂pi

− Ca

)]
(6)

and

δε(H + λaCa) = εb(t){H,Cb} + Caδελ
a + λaεb(t){Ca,Cb} = Caδελ

a + λaεb(t)cc
abCc. (7)
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Thus, the appropriate definition

δελ
a := ε̇a(t) − λbεc(t)ca

bc =: (D0ε(t))
a (8)

makes δεLe to be

δεLe = Ca

(
ε̇a(t) − δελ

a − λbεc(t)ca
bc

)
+

d

dt

[
εa(t)

(
pi

∂Ca

∂pi

− Ca

)]

= d

dt

[
εa(t)

(
pi

∂Ca

∂pi

− Ca

)]
, (9)

which proves that variations (4) and (8) define a Noether gauge symmetry for Le. In equation
(8) we have introduced the covariant derivative [14]

(D0)
a
c := ∂t δ

a
c − λbca

bc, (10)

which is nothing but the covariant derivative for the adjoint representation. Analogously, one
can introduce the covariant derivative for the phase-space variables ξ i = {p1, . . . , q

1, . . .} as

D0ξ
i := ∂t ξ

i − λa�aξ
i = ∂tξ

i − λa{ξ i, Ca}. (11)

Here �a is the representation of the symmetry generators Ca that acts on ξ i . Indeed, the Jacobi
identity for Poisson brackets ensures that [�a, �b] = −cc

ab�c. Because both ∂t and {, Ca}
fulfill the Leibniz rule one can extend the covariant derivative (11) to any function φ(ξ) on the
phase space.

Using the fact that our active variations commute with the time derivatives, i.e.
δε(∂tφ) = ∂t (δεφ), it is easy to check that the covariance condition takes the form

δε(D0φ) = εaD0({φ,Ca}) =: εa�a(D0φ). (12)

The first equality in (12) can be proved by considering (1) that active variations commute
with the time derivatives, and so �a(∂tφ) = ∂t {φ,Ca}, and (2) that the action of �a on
the multipliers is the adjoint action: �aλ

b = cb
acλ

c. Note that in the last equality in (12), the
representation �a of the symmetry generators acting on D0q was defined. This definition turns
out to be an exact identity on the mass-shell. In this regard it is interesting to realize that the
curvature F = [D0,D0] = 0, and so in the case of mechanics the usual gauge-invariant kinetic
term Tr(F2) is trivially zero. Thus the multipliers λa cannot become dynamical variables.
On the other hand, a subsequent elimination of the momenta—which are auxiliary variables
(auxiliary variables are by definition variables that can be isolated by using their own EOM)
for Le—as done in the next subsection—will assign the λa’s the status of auxiliary variables.

Note that (8), (10) and (11) carry indeed all the flavor of the transformation of a gauge field
in a non-Abelian gauge theory. This is exactly the case, because what we have done is precisely
the application of the gauge principle: to gauge a group of rigid symmetries. We remind that
the rigid symmetries are generated by constants of motion while the gauge symmetries by the
first-class constraints4. Thus gauging a group of rigid symmetries is tantamount to enforce the
generating constants of motion as constraints. In this respect λa play the role of a connection
in a principal bundle over R. The fact that F = 0 then indicates that this bundle is flat
(not a big surprise for a bundle with so simple base space). Let us, however, stress that our
derivation would go through even if not every rigid symmetry is gauged. For instance, we
could have limited ourselves only to gauging any subgroup of rigid symmetries. The analogy
with non-Abelian Yang–Mills theory is summarized in table 1.

4 Dirac introduced the concept of a first-class function as a function whose Poisson bracket with the constraints
vanishes on the constraints’ surface. Gauge symmetries are made up with linear combinations of first-class constraints,
which appear as coefficients of an expansion in terms of the arbitrary functions and their time derivatives up to a
certain order.
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Table 1. Comparison between the gauge theory presented in section 2 and the non-Abelian Yang–
Mills theory. The parallelism obtained allows us to formally identify D0 ↔ Dμ and λ ↔ Aμ.

Gauge theory from section 2a Non-Abelian Yang–Mills theoryb

δελ
a(t) = D0ε

a(t) δAa
μ(x) = Dμεa(x)

δεφ(ξ) = �(ε)φ(ξ) δΦ(x) = iT (ε)Φ(x)

D0ε
a(t) = ∂t ε

a(t) − λb(t)ca
bcε

c(t) Dμεa(x) = ∂μεa(x) + Ab
μ(x)f a

bcε
c(x)

D0φ(ξ) = ∂tφ(ξ) − λa�aφ(ξ) DμΦ(x) = ∂μΦ(x) − iAa
μTaΦ(x)

{Ca,Cb} = cc
abCc ⇒ [�(Ca), [ta, tb] = if c

abtc ⇒ [T (ta),

�(Cb)] = −ca
ab�(Ca) T (tb)] = if c

abT (tc)

On mass-shell situation (∂tCa = 0)
D0ε = ∂tε − {λ, ε} Dμε = ∂με + [Aμ, ε]
δε(D0φ) = D0({φ, ε}) = �(ε)D0φ δ(DμΦ) = iT (ε)DμΦ

a Here we accept notations: λ = λaCa , ε = εaCa , ξ = {p1, p2, . . . , q
1, q2, . . .} is a

phase-space point, φ is an arbitrary function on a phase space and
�(Ca) = �a = {, Ca} = ωij ∂Ca

∂ξj
∂

∂ξ i .
b Here we accept notations: Aμ = −iAa

μta , ε = εata , Φ is an arbitrary field multiplet
and T (ta) = Ta is an irreducible representation of the algebra of ta generators that is
adapted to Φ, e.g. for Φ in fundamental representation of SU(N) then
T (Aμ) = −iAa

μTa with Ta being the (N × N) Hermitian matrices. Generators in
self-adjoint rep. are defined as (Tb)

a
c = if a

bc.

Note finally that the case of a soft algebra [10] is easily accommodated. We can relax the
condition that the constants of motion Ca form a Lie algebra to that of a soft algebra, where
there are no longer structure constants but structure functions, {Ca,Cb} = cc

ab(q, p)Cc, and
we can also relax the constant of motion condition, {Ca,H } = 0 to {Ca,H } = ab

a(q, p)Cb.
In this case, equation (8) changes to

δελ
a := ε̇a(t) − λbεc(t)ca

bc − εb(t)ab
a . (13)

In the field theory, one can find more general cases [10], like that of an open algebra, where
the algebra of the constants of motion only closes up to linear terms that are antisymmetric
combinations of the equations of motion, or when there is functional dependence among the
constants of motion. We believe that these cases can also be addressed, but since the ordinary
case already requires a non-standard formalism (see subsection 5.3), we leave them for further
study.

3. Inverting the Legendre map

3.1. The Lagrangian Lλ

Consider now the equations of motion for Le, i.e.

q̇ − ∂H

∂p
− λa ∂Ca

∂p
= 0, (14a)

ṗ +
∂H

∂q
+ λa ∂Ca

∂q
= 0, (14b)

Ca = 0. (14c)

5
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It is interesting to observe that by introducing the symplectic matrix ω:

ωij =
(

0 11
−11 0

)
ij

, (15)

(with ω−1
ij = ωij ) the EOM (14) can be succinctly written as

D0ξ
i = ωij ∂H

∂ξj
, Ca = 0. (16)

We can now use the first set of equations (14) to locally isolate the momenta in terms of
positions q, velocities q̇ and the multipliers λa , thus rewriting (14a) in the equivalent form:

p − P(q, q̇, λ) = 0, (17)

for some functions P. This invertibility of the LM will hold in general. In fact, since the
starting theory was not gauge, invertibility is guaranteed for λa = 0. With λa being just new
independent variables, invertibility will be maintained in general.

We implement p → P(q, q̇, λ) into Le to define the new Lagrangian Lλ:

Lλ(q, q̇, λ) = P(q, q̇, λ)q̇ − H(q, P (q, q̇, λ)) − λaCa(q, P (q, q̇, λ)). (18)

Notice then

∂Lλ

∂q
= −

(
∂H

∂q
+ λa ∂Ca

∂q

)∣∣∣∣
p→P

+

(
q̇ − ∂H

∂p
− λa ∂Ca

∂p

)∣∣∣∣
p→P

∂P

∂q̇

= −
(

∂H

∂q
+ λa ∂Ca

∂q

)∣∣∣∣
p→P

, (19)

because ∂Le
∂p

∣∣
p→P

= (
q̇ − ∂H

∂p
− λa ∂Ca

∂p

)∣∣
p→P

vanishes identically owing to the procedure to
define the functions P(q, q̇, λ). By the same token, we obtain

∂Lλ

∂q̇
= P(q, q̇, λ), (20)

so we reobtain the functions P as the definition of the new Lagrangian momenta. By taking
into account equation (20), the reader may note that the EOM for the Lagrangian Lλ yield

dP

dt
+

∂H

∂q
+ λa ∂Ca

∂q
= 0, (21)

which is equivalent to (14b) when the identity (17) is utilized.
The remaining EOM for Le is the one associated with the multiplier λ. This equation

sets the constraint just as EOM. From the perspective of Lλ, we can write down EOM for λa;
∂Lλ

∂λa = ∂Le
∂p

∣∣
p→P

∂P
∂λa − Ca(q, P (q, q̇, λ)), but again, since ∂Le

∂p

∣∣
p→P

vanishes identically, we
end up with

Ca(q, P (q, q̇, λ)) = 0, (22)

as the last EOM for Lλ. This shows the equivalence between EOM from Le and Lλ, because
(22) is just (14c) with the substitution p → P(q, q̇, λ), which is nothing but the EOM (14a).

3.2. Gauge symmetry for Lλ

Let us now prove that Lλ has the gauge symmetry δλq = (δεq)|p→P , δλλ = δελ. One has

δλLλ =
(

∂Le

∂q

)∣∣∣∣
p→P

δλq +

(
∂Le

∂q̇

)∣∣∣∣
p→P

δλq̇ +

(
∂Le

∂p

)∣∣∣∣
p→P

δλP +

(
∂Le

∂λ

)∣∣∣∣
p→P

δλλ. (23)

6
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We need not care for the term with δλP because
(

∂Le
∂p

)∣∣
p→P

= 0 identically due to the
equivalence between (14) and (17). As regards δλq̇ we can write it as (δεq̇)|p→P . All in all
we can write

δλLλ = (δεLe)|p→P =
(

d

dt
F

)∣∣∣∣
p→P

= d

dt
(F|p→P

), (24)

where5 in the last step we use that p → P implies also ṗ → d
dt

P , etc. Thus we have proved
that Lλ inherits the gauge invariance of Le.

3.3. A step further

Finally, if λ can be isolated from equation (22), this means that it is in fact an auxiliary
variable. It is well known that auxiliary variables can be substituted back into the Lagrangian
without affecting the dynamics (see e.g. the appendix in [15]). In fact the earlier substitution
p → P(q, q̇, λ) in the previous subsection is an example of this mechanism, for the variables
p are isolated by use of their own equations of motion (14), but we have been explicit in
the proof of equivalence of EOM. Thus with the substitution we would have arrived at a
new Lagrangian L(q, q̇) with a dynamics equivalent to that of Le. Of course, there may be
technical obstacles to carrying out this step: solving the system of equations (22) may prove
too difficult; getting rid of the multipliers can in general lead to impractically complicated,
nonpolynomial expressions for L, etc. One can then revert back to the Lagrangian Le, with its
EOM (14).

3.4. . . . and a step further

Despite potential complications related to solving the system (22) we will suppose that indeed
the variables λa can be isolated from equations (22) and eliminated by plugging them back
into the Lagrangian Lλ. Thus (22) will be equivalent to λa = 
a(q, q̇) for some functions 
a .
We will prove that L(q, q̇) := (Lλ(q, q̇, λ))|λ→
 has the gauge symmetry δLq = (δλq)|λ→
.
One has

δLL =
(

∂Lλ

∂q

)∣∣∣∣
λ→


δLq +

(
∂Lλ

∂q̇

)∣∣∣∣
λ→


δLq̇ +

(
∂Lλ

∂λ

)∣∣∣∣
λ→


δLλ. (25)

Note that we do not have to define δLλ because the equation λ = 
(q, q̇) is exactly ∂Lλ

∂λ
= 0.

We continue

δLL =
(

∂Lλ

∂q
δλq +

∂Lλ

∂q̇
δλq̇ +

∂Lλ

∂λ
δλλ

)∣∣∣∣
λ→


=
(

d

dt
F|p→P

)∣∣∣∣
λ→


= d

dt
(F|p→P,λ→


). (26)

This concludes the proof that L is a Lagrangian with gauge symmetry. Our result is general.
Given any regular (i.e. non-gauge) theory and a Noether constant of motion in the canonical
formalism, one can make this constant of motion a first-class constraint and construct an
associated Lagrangian with this gauge symmetry.

5 Note that the operator d
dt

means different things depending on the variables we consider. For instance, with

variables q, p, λ, we will have d
dt

= q̇ ∂
∂q

+ ṗ ∂
∂p

+ λ̇ ∂
∂λ

+ q̈ ∂
∂q̇

+ · · ·. Instead, if we send p → P(q, q̇, λ), we will have
d
dt

= q̇ ∂
∂q

+ λ̇ ∂
∂λ

+ q̈ ∂
∂q̇

+ · · ·.

7
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4. Examples in mechanics

4.1. Enforcing a function not being a constant of motion as a constraint

Although we are developing the theory for implementing constants of motion as constraints,
let us consider an example where one implements a non-constant of motion, just to realize
in practical terms the problems that are likely to appear. Consider the standard Hamiltonian
H(q,p) = p2

2m
+ V (q2) (q and p are d-dimensional vectors) and try to implement C(q,p) =

q · p as a constraint. Following the above instructions we get P (q, q̇, λ) = m(q̇ − λq)

and λ is determined as 
(q, q̇) = m
q · q̇
q2 . A substitution of both determinations of p and

λ into the extended Lagrangian yields L(q, q̇) = 1
2mq̇Mq̇ − V (q2), where M is the matrix

Mij = δij − qiqj

q2 . This Lagrangian is singular because the Hessian matrix with respect to the
velocities is (up to a multiplicative constant) identical to M, i.e. to a projector transverse to q.
Thus L(q, q̇) may potentially describe a gauge theory.

The Lagrangian momenta are defined as p̂ = ∂L
∂q̇

= Mq̇, which indeed implies
the constraint q · p � 0 because Mq = 0 identically. The canonical Hamiltonian is
just p2

2m
+ V (q2). So the dynamics in phase space is given by the Dirac Hamiltonian

HD(q,p) := H(q,p) + ηq · p, as expected. The problem in this example is that we must
require stabilization of the now primary constraint q ·p � 0. We get, as the secondary
constraint, p2

2m
− q2V ′(q2) � 0. For a general potential V this gives a new condition which

in its turn must be stabilized again, and so on. We can easily end up with incompatibility.
Nothing of this kind happens if we choose the constraint as one of the constants of motion of
the theory.

4.2. Enforcing a constant of motion as a constraint

Let us work with the same example as in the previous section, i.e. H(q,p) = p2

2m
+ V (q2),

but now in R
3, and with C(q,p) = ε3jkqjpk . The latter is nothing but one of the conserved

angular momenta. With this we get P l(q, q̇, λ) = m(q̇l − λε3j lqj ). Insertion of P (q, q̇, λ)

into the constraint C determines


(q, q̇) = ε3jkqj q̇k

α
, (27)

with α := (q1)2 + (q2)2. Upon evaluation and elimination of p and λ, we obtain from the
extended Lagrangian Le the new Lagrangian

L(qq̇) = m

2

[
q̇2 − (ε3jkqj q̇k)2

α

]
− V (q2) = m

2
q̇Mq̇ − V (q2), (28)

with the projector

M
nk = δnk − ε3mnε3jkqmqj

α
. (29)

It is easy to check that the projector M has vk := ε3jkqj as the null vector.
Now we work with the Lagrangian (28). The Lagrangian momenta are p̂ = ∂L/∂q̇ = Mq̇.

The canonical Hamiltonian becomes again p2

2m
+ V (q2) but there is the primary constraint

ε3jkqjpk which is now derived from the definition of the canonical momenta and the use of
the null vector for M. Thus, the Dirac Hamiltonian is HD(q,p) := H(q,p) + ηε3jkqjpk .
Stabilization of this constraint is trivial and there are no secondary constraints in phase space.
In agreement with this fact, one can check that the Lagrangian (28) does not yield constraints
in tangent (i.e. configuration-velocity) space.
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One can identify the gauge transformation for L as δLqi = ε(t){qi, C}|p→P ,λ→
 =
−ε(t)ε3ij qj . It is more instructive to read it by taking cylindrical coordinates z, ρ, θ ; then,
δLz = 0, δLρ = 0, δLθ = ε. In these coordinates the Lagrangian (28) is

L = 1
2m(ż2 + ρ̇2) − V (z2 + ρ2). (30)

Now the gauge symmetry becomes obvious because there is no dependence on the angular
variable in the Lagrangian. Indeed the variable θ is purely gauge. The original, non-gauge,
Lagrangian was Lng = 1

2m(ż2 + ρ̇2 + ρ2θ̇2) − V (z2 + ρ2), so we see that the whole procedure
boils down to getting rid of the piece ρ2θ̇2. This term was invariant under rigid translations
for the variable θ , that is, rigid rotations around the z-axis. The disappearance of this term
makes these rotations a gauge symmetry.

An illuminating consideration can be drawn from this example. At first sight it could
come as a surprise that the implementation of the constraint, which requires the vanishing
of the ‘angular momentum’ along the z-axis, allows for motions whose projection to the x–y
plane has arbitrary dependence in the variable θ . The correct way of looking at it is the other
way around: in promoting the constant of motion ε3jkqjpk to be a constraint, we are also
promoting it from being a rigid symmetry generator to a gauge generator; consequently, the
rotations around the z-axis are promoted to gauge transformations. In group theoretical terms,
the implementation of ε3jkqjpk as a constraint has the consequence that a subgroup of the
original rigid symmetry SO(3) gets gauged, precisely that of the rotations around the z-axis.

4.3. Relativistic massive spinless particle

Consider the Lagrangian (spacetime indices will be mostly suppressed) Lng = 1
2mẋ2 in

Minkowski spacetime with ημν = diag(1,−1, . . . ,−1), and the rest mass m. Its associated
Hamiltonian is H = 1

2m
p2. All the momenta are constants of motion, so we can try to

implement them as constraints. We then get the extended Lagrangian

Le = pẋ − 1

2m
p2 − λ(p − a), (31)

where in component notation λ(p − a) ≡ λμ(pμ − aμ), and aμ is a constant 4-vector.
Elimination of the momenta yields the Lagrangian

Lλ = 1
2m(ẋ − λ)2 + λa, (32)

which has the gauge symmetry δλx
μ = εμ(τ ), δλλ

μ = ε̇μ(τ ), with εμ(τ ) being arbitrary
infinitesimal functions of the evolution parameter. If we further eliminate the variables λμ,
which have by now acquired the status of auxiliary variables, we end up with the Lagrangian

L = aẋ − 1

2m
a2. (33)

The last term is an irrelevant constant. Note that the EOM for L are void: every trajectory
is a solution of the EOM. This conclusion should not be surprising because all translational
symmetries in the Minkowski target space have been gauged, which results in making any
trajectory acceptable as a solution of the EOM. We have simply introduced too much gauge
freedom.

Instead of trying to gauge the rigid translations in the target space, we could have decided
to gauge the rigid translations along the world line, that is, the rigid translations in the evolution
parameter. Its associated symmetry in phase space is δεx = εẋ, δεp = 0, with ε being an
infinitesimal constant and the generator is the constant of motion 1

2p2. Let us fix the value of
this constant of motion so that p2 = m2 and require this relation to become a constraint. This
value p2 = m2 selects trajectories with unit velocity in Minkowski spacetime, ẋ2 = 1, but

9
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after enforcing this constant of motion as a constraint, a very different setting emerges, as we
will see. For later convenience we consider the rescaled constant of motion C = 1

2m
(p2 −m2).

In this case,

Le = pẋ − 1

2m
p2 − λ

2m
(p2 − m2), (34)

and the elimination of the momenta gives

Lλ = m

2(1 + λ)
ẋ2 +

1

2
λm, (35)

which indeed has the gauge symmetry δλx = ε(τ ) ẋ
1+λ

, δλλ = ε̇(τ ), obtained under the rules
given in section 3. Addition to Lλ of an irrelevant constant m/2 (which does not affect the
dynamics), and a redefinition λ → λ − 1 allows us to write the modified Lagrangian (for
which we keep the same notation) as

Lλ = m

2λ
ẋ2 +

1

2
λm, (36)

with gauge transformations δλx = ε(τ ) ẋ
λ
, δλλ = ε̇(τ ). Defining as a new arbitrary function

ξ = ε
λ

, the infinitesimal gauge transformations read

δλx = ξ ẋ, δλλ = d

dτ
(ξλ), (37)

which show directly that x is a scalar and λ a scalar density under the reparametrization
τ �→ τ − ξ . The reader may rightly recognize in Lλ the familiar Wheeler–Polyakov’s
Lagrangian [17, 18]

LWP = − 1
2 (e−1(τ )ẋμ(τ )ẋμ(τ ) + e(τ )m2), (38)

with λ = −me. The auxiliary variable e(τ ) is an einbein (i.e. square-root of the world-line
metric) and τ is the world-line parameter (‘label time’). It can be easily checked that the
corresponding action for Lλ is invariant under finite reparametrizations of the label time,
τ �→ τ ′ = f (τ), which, in the active view of reparametrization invariance, read

xμ(τ) �→ x ′μ(τ) = xμ(f −1(τ )), λ(τ ) �→ λ′(τ ) =
(

df −1(τ )

dτ

)
λ(f −1(τ )). (39)

Here f (τ) is an arbitrary monotonically increasing function of τ . It is easy to check that the
finite transformations (39) can be obtained from the infinitesimal transformations (37) if we
set f (τ) = τ − ξ and successively iterate.

The next step is to get rid of the variable λ via the scheme presented in section 3.4. The
final Lagrangian L becomes L = m

√
ẋ2, which coincides with the usual square root world-

line Lagrangian for the relativistic particle. The corresponding action is well known to be
invariant under reparametrizations of the label time (i.e. under the first transformation in (39)).
We have thus succeeded in making the original theory invariant under reparametrizations (or
diffeomorphisms). As a bonus we have recovered the (on mass-shell) equivalence between
LWP and the square root world-line Lagrangian.

5. The gauge principle in relativistic field theory

5.1. The minimal setting

Let us apply our results to a non-Abelian field theory. For definiteness we will consider an
N-component complex scalar field that transforms under the fundamental representation of the

10
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SU(N) group. The corresponding (non-gauge) Lagrangian density for the free fields is given
by

Lng = ημν(∂μφ∗) · (∂νφ) − m2φ∗ · φ. (40)

This Lagrangian has clearly SU(N) rigid symmetry

δφ = iεaTaφ, δφ∗ = −iεaφ∗Ta, (41)

(note henceforth that the action of the Hermitian matrix Ta in φ∗Ta undergoes a transposition
with respect to the action of Ta in Taφ) with εa being infinitesimal constants and Ta the
Hermitian (N ×N) matrices spanning a basis of the Lie algebra of SU(N), [Ta, Tb] = if c

abTc.
To make the rigid transformation gauge, we proceed along the methods outlined in sections
2 and 3. Let us first move the description in phase space. The Lagrangian definition of the
momenta is

π = ∂0φ
∗, π∗ = ∂0φ, (42)

and the Hamiltonian density becomes

H = π∗ · π + (∇iφ
∗) · (∇iφ) + m2φ∗ · φ. (43)

The constants of motion which generate the rigid SU(N) symmetry are obtained as coefficients
of the infinitesimal constants εa in the space integration of the time component of the conserved
current, which is computed by standard Noether methods (see, e.g., [9]). We get

j 0(x) = iεa[π(x) · Taφ(x) − φ∗(x)Ta · π∗(x)]. (44)

The generator G = εaGa := ∫
d3xj 0(x) indeed generates (41) together with

δπ = −iεaπTa, δπ∗ = iεaφ∗Ta. (45)

These transformations are in full agreement with the definition of the Lagrangian momenta
(42). The algebra of the generators

Ga = i
∫

d3x[π(x) · Taφ(x) − φ∗(x)Ta · π∗(x)] (46)

is {Ga,Gb} = −f c
abGc. The opposite sign in front of the structure constant f c

ab is a direct
consequence of the conventional choice [Ta, Tb] = if c

abTc. The contact with our results from
section 2 can be established by taking cc

ab = −f c
ab.

The extended Lagrangian now takes the form

Le =
∫

d3xLe =
∫

d3x(π · φ̇ + φ̇
∗ · π∗ − π∗ · π − (∇iφ

∗) · (∇iφ)

−m2φ∗ · φ − iλa(π · Taφ − φ∗Ta · π∗)). (47)

The gauge transformations forLe are given by (41) and (45), but with εa now being an arbitrary
infinitesimal function of time, together with the analog of (8):

δλa(x) := ∂0ε
a(t) − f a

bcε
b(t)λc(x) = (D0ε(t))

a. (48)

Next we proceed as in section 3 to construct the Lagrangian Lλ. We obtain, after some
simple computations

Lλ = (D0φ)∗(D0φ) − (∇iφ
∗) · (∇iφ) − m2φ∗ · φ, (49)

with

D0φ := ∂0φ − iλaTaφ, (D0φ)∗ := ∂0φ
∗ + iλaφ∗Ta (50)

being the usual gauge covariant derivatives with the standard covariance condition δ(D0φ) =
iεa(x)TaD0φ.
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5.2. Finishing the job

We have succeeded with Lλ in implementing gauge invariance in a restricted form. In fact, we
have implemented it in the most minimal way, by adding as many new fields—the old Lagrange
multipliers—as dimensions of the original rigid group we have gauged, and by restricting the
infinitesimal parameters εa(t) of the gauge transformation to be only functions of time, albeit
arbitrary. On the other hand, the above implementation was so minimal that we have lost a big
chunk of the Poincaré invariance along the way. Looking at the structure of the term D0φ, it is
clear that if Poincaré transformations are to be implemented in their entirety, the fields λa are
nothing else than the time components Aa

0 of vector fields Aa
μ, as ∂0φ are time components of

the vector fields ∂μφ. Now we can in a single stroke restore full Poincaré invariance and also
let the gauge parameters to have arbitrary dependence on all the spacetime coordinates. We
just need to mimic what has been done for the time coordinate for all the space coordinates. In
this way, gauge invariance is trivially preserved and we recover Poincaré invariance. Then the
term ∂iφ in the Lagrangian (49) must be modified to Diφ := ∂iφ − iAa

i Taφ and similarly for
∂iφ

∗. The gauge transformations for the gauge fields will be the generalization of (48), namely
δAa

μ(x) := ∂μεa(x) − f a
bcε

b(x)Ac
μ(x). All in all we end up with the well-known Lagrangian

L = ημν(Dμφ∗) · (Dνφ) − m2φ∗ · φ, (51)

which is the Lagrangian for the minimal coupling of the complex scalar fields with the gauge
field.

5.3. The direct way: De Donder–Weyl formalism

The way of finishing the job in the previous subsection leaves us with the uneasiness of
having done it with some artifice. The problem is that the standard canonical formalism
destroys the explicit Lorentz invariance and the procedure in subsection 5.1 ends up with
truly destroying Lorentz invariance, which then must be restored ‘by hand’, as done in
subsection 5.2. Fortunately there is a better way. De Donder–Weyl formalism [16], which
preserves manifest Lorentz invariance in phase space, is a more suited tool to do the job. Let us
go back to the Lagrangian (40) and define the Lorentz 4-component momenta (polymomenta)
by

πμ = ∂L
∂μφ

= ∂μφ∗, π∗μ = ∂L
∂μφ∗ = ∂μφ. (52)

The Hamiltonian, defined in the De Donder–Weyl formalism (DWF) through πμ · ∂μφ + π∗μ ·
∂μφ∗ − Lng, becomes

HDW = πμ · π∗νημν + m2φ∗ · φ. (53)

To write the extended Lagrangian we will use all four components of the SU(N) conserved
currents, j

μ
a = i(πμTa · φ − φ∗Ta · π∗μ). This is the natural way in DWF to maintain a

manifest Lorentz invariance6. The associated multipliers Aa
μ are then Lorentz 4-vectors. De

Donder–Weyl’s extended Lagrangian can then be written as

Le = (πμ) · ∂μφ + (πμ)∗ · ∂μφ∗ − HDW − iAa
μ(πμ · Taφ − φ∗Ta · π∗μ). (54)

Finally, applying the methods introduced in section 3, we can successively construct
Lagrangians Lλ and L. By calling the latter as LDW, we obtain

LDW = ημν(Dμφ∗) · (Dνφ) − m2φ∗ · φ, (55)

6 To strengthen this point note that the currents associated with gauge symmetries must always vanish on shell, except
for possible divergences of arbitrary antisymmetric tensors. In the De Donder–Weyl formalism all the components
of the gauge currents are constraints in the new phase space.
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with the covariant derivatives as defined above: Dμφ := ∂μφ− iAa
μTaφ, etc. By finding LDW

we have gained a new conceptual access to gauge field theories in flat spacetime.
From here, the rest is straightforward. One can find the curvature [Dμ,Dν] which

transforms under the adjoint representation of the gauge group and allows for a simple
construction of a gauge-invariant Lagrangian with kinetic terms for the Yang–Mills gauge
fields—and a bonus of new couplings in the non-Abelian case. With covariant derivatives and
curvatures at one’s disposal, one can analogously formulate other gauge field theories such as
Chern–Simons gauge theory or BF gauge theory [19]. Non-local gauge invariants like Wilson
loops or effective gluon masses [20] are also at hand.

We have worked out the case of N-component complex scalar field transforming under the
SU(N) fundamental representation but we could have done the same, e.g. for the real-valued
field multiplet in the SO(N) fundamental representation and for the spinorial case (e.g. for
Dirac or Rarita–Schwinger fields). Note that the Abelian case is recovered just as a particular
case, as it should be.

6. World sheet general covariance: the Nambu–Goto closed string

As another relevant example, we consider the non-gauge Lagrangian

Lng = T

2
hab∂ax

μ∂bx
νημν := T

2
hab∂ax∂bx, (56)

with the world-sheet metric hab = diag(1,−1) and the target-space (or background) metric
ημν = diag(1,−1, . . . ,−1). T is the string tension. For simplicity we will in the following
work with natural units where T = 1. The target-space functions xμ(τ, σ ) describe the
spacetime embedding of the world sheet. In the following, we will suppress the target-space
indices. Our aim now is to gauge the world-sheet rigid translational symmetry

δεx = εa∂ax. (57)

To prevent any conflicting issue concerning the ‘spatial’ (σ ) boundary conditions we will
deal exclusively in this section with the closed string. Following section 5.3, the De Donder–
Weyl polymomenta are pa = ∂L

∂(∂ax)
= hab∂bx, and the corresponding De Donder–Weyl

Hamiltonian becomes

HDW = pa∂ax − Lng = 1
2habp

apb. (58)

The Noether conserved current associated with symmetry (57) is found by ordinary methods
to be

J a = εb
(
pahbcp

c − 1
2δa

bp
dhdcp

c
)
. (59)

In addition to δεx, we need also to know δεp
a . To compute it we resort momentarily to the

standard canonical formalism and proceed as follows. The world sheet τ -component of the
current is

J 0 = εb
(
p0hbcp

c − 1
2δ0

bp
dhdcp

c
)
, (60)

where p1 = h11∂1x = −x ′, so J0 has the explicit form

J 0 = ε0

(
(p0)2 − 1

2
[(p0)2 − (x ′)2]

)
+ ε1(p0x ′) = ε0

2
[(p0)2 + (x ′)2] + ε1(p0x ′). (61)

From this expression, the transformations of p0 mediated by the corresponding Noether charge
read

δεp
0 =

∫
dσ ′ {p0(τ, σ ), J 0(τ, σ ′)

} = ∂1(ε
0x ′ + ε1p0). (62)
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In deriving (62) we have allowed for εa to be an arbitrary infinitesimal world-sheet function
to prepare the formalism for the gauge transformations we want to implement.

By rewriting δεp
0 with the help of De Donder–Weyls’ polymomenta we get δεp

0 =
∂1(ε

1p0 − ε0p1). Since in the DWF all polymomenta play the same role, we infer that the
general transformation law for pa is

δεp
a = ∂b(ε

bpa − εapb). (63)

This should be coupled together with transformations (57) which in terms of the De Donder–
Weyl variables read

δεx = εahabp
b. (64)

This last transformation also naturally follows from our definition of variations δε

(cf equation (4)), namely

δεx =
∫

dσ ′ {x(τ, σ ), J 0(τ, σ ′)
} = εahabp

b, (65)

as it, of course, should.
Next, in order to proceed with our program, we define the extended Lagrangian with

Lagrange multipliers Aab. By remembering that target-space indices are suppressed, we obtain

Le = pa∂ax − HDW − Aab

(
papb − 1

2habhdcp
dpc

)
= pa∂ax − 1

2habp
apb − 1

2Babp
apb, (66)

where 1
2Bab := Aab − 1

2habAcdh
cd is symmetric and traceless. This shows that although we

initially had three free Lagrange multipliers (Aab is symmetric) we end up with only two,
because of the particular structure of the current Ja and the dimensionality of the world sheet.

Note the important fact that the new EOM for Le imply ∂ax = (hab + Bab)p
b, and

therefore expression (64), originated from (57) before the implementation of the Lagrange
multipliers, needs to be reformulated to δεx = εa(hab + Bab)p

b. In turn this means (cf
equation (65)) that the conserved current needs to be reformulated. It should be noticed that
a redefinition of currents has not been requisite in the previously discussed systems (apart
from the relativistic particle in section 4.3) because the Noether currents—coming from rigid
(target-space) symmetries—do not change when the constraints are imposed. In contrast, here
we deal with currents that come from rigid world-sheet symmetries and these are influenced
when we change Lng to Le. Clearly, the same scenario occurs also for the relativistic particle
discussed in section 4.3, but there the change from δεx = εp/m to δεx = εp(1 + λ)/m can be
assimilated into a redefinition of ε without any extra consequences. This is not the case here
(see our discussion later). It is also important to observe that δεp

a as defined by equation (63)
is not altered because the metric tensor does not appear in expression (63) and one can check
that the changes in the current are exactly absorbed, as regards the computation of δεp

0, with
the redefinition of the relation between ∂ax and pb, already mentioned. The above-outlined
redefinition of the conserved current is just the first step in an iteration process, with the aim of
consistency, in which we know that at every step the current will be quadratic in the momenta.
Thus this process will result in a final extended Lagrangian of the general form

Lf = pa∂ax − 1
2Cabp

apb, (67)

where Cab, which we take symmetric, contains all the information about the Lagrange
multipliers. Seen in retrospect, (66) should be interpreted as the first-order expansion of
Cab around the world sheet Minkowski metric, so that Cab = hab + Bab, with the coefficients
Bab now taken infinitesimal. Once this observation is taken into account, we note that the
tracelessness condition for Bab amounts to the condition det Cab = −1 for this Cab = hab+Bab.
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Thus det Cab = −1 is valid at first order around hab. Repeated iterations of the infinitesimal
change hab �→ hab + Bab will be expected to preserve this condition (cf subsection 6.2). Thus
we end up with the result that the final extended Lagrangian is supplemented by the condition

det Cab = −1. (68)

The consequences of (68) will be explored later on, in the next subsection.
If our inputs are correct, the Lagrangian (67) should exhibit gauge freedom under the

transformations (with εa arbitrary infinitesimal functions),

δεx = εαCabp
b, δεp

a = ∂b(ε
bpa − εapb), (69)

and a certain (so far unknown) transformation δεCab. This means that δεCab should be such
that together with (69) it should leave the Lagrangian Lf quasi-invariant, i.e. with δεLf being
a divergence. Let us now prove the consistency of our scheme by providing the explicit form
for δεCab. To this end we first write

δεLf = (δεp
a)∂ax + pa∂a(δεx) − Cab(δεp

a)pb − 1
2 (δεCab)p

apb, (70)

and note that the first term is already a divergence because

(δεp
a)∂ax = ∂b(ε

bpa − εapb)∂ax = ∂b[(εbpa − εapb)∂ax]. (71)

Thus ((div.) stands for divergences),

δεLf = (div.) + pa∂a(ε
cCcbp

b) − Cab(δεp
a)pb − 1

2 (δεCab)p
apb

= (div.) + pa∂a(ε
cCcb)p

b + paεcCcb(∂ap
b)− Cab(∂c(ε

cpa − εapc))pb − 1
2 (δεCab)p

apb

= (div.) + pa∂a(ε
cCcb)p

b + paεcCcb(∂ap
b) + (εcpa − εapc)∂c(Cabp

b)− 1
2 (δεCab)p

apb

= (div.) + pa∂a(ε
cCcb)p

b + paεcCcb(∂ap
b) + (εcpa − εapc)(∂cCab)p

b

+ (εcpa − εapc)Cab(∂cp
b) − 1

2 (δεCab)p
apb. (72)

Consider the next to last term in (72), i.e. (εcpa − εapc)Cab(∂cp
b). The second piece cancels

another term in (72), whereas the first piece can be written as

εcpaCab(∂cp
b) = 1

2εcCab∂c(p
apb) = (div.) − 1

2∂c(ε
cCab)p

apb. (73)

All in all we end up with

δεLf = (div.) + 1
2pa(∂a(ε

cCcb) + ∂b(ε
cCca))p

b + (εcpa − εapc)(∂cCab)p
b

− 1
2∂c(ε

cCab)p
apb − 1

2 (δεCab)p
apb

= (div.) + 1
2pa(∂a(ε

cCcb) + ∂b(ε
cCca))p

b + paεc(∂cCab)p
b

− 1
2pa(εc(∂aCcb) + εc(∂bCca))p

b − 1
2∂c(ε

cCab)p
apb − 1

2 (δεCab)p
apb, (74)

which implies that under the transformation

δεCab = εc∂cCab + Ccb∂aε
c + Cac∂bε

c − Cab∂cε
c, (75)

the LagrangianLf is indeed quasi-invariant. Note that this solution (75) for the transformations
rules of Cab is unique. Equation (75) is the Lie derivative of a covariant tensor density (0, 2)

of weight −1 along ε, i.e. δεCab = £εCab. Its inverse matrix, which we denote as Cac, will
then be a contravariant tensor density (2, 0) of weight +1, which then transforms according to

δεC
ab = εc∂cC

ab − Ccb∂cε
a − Cac∂cε

b + Cab∂cε
c = £εC

ab. (76)

Result (75) is very good news because the elimination of the momenta from their own EOM
in (66) produces the Lagrangian Lλ—which in this context is more reasonable to denote as
LC (and similarly substitute δλ by δC)—which reads

LC(x, ∂ax, Cbc) = Lf(x, ∂ax, P c(x, ∂ax, Cde, ), Cde) = 1
2Cab∂ax∂bx. (77)
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The latter is a scalar density under the transformations (57) and (76), indeed δCLC = ∂a(ε
aLC).

Because transformations (57) and (76) are respectively Lie derivatives for scalars and for tensor
densities, they—similarly as in the general relativity [9]—express diffeomorphism invariance
(or general covariance) of the theory.

6.1. The condition det C = −1

The Lagrangian LC is not the end of the story because the auxiliary variables Cab satisfy the
additional condition det Cab = −1. First note that this condition is compatible with the gauge
symmetry because det Cab behaves as a scalar under the gauge transformation (75):

δε det C = εa∂a(det C). (78)

As a by-product, we see that by requiring the extra constraint det Cab = −1, the gauge freedom
stays intact.

In practice, one may consider two ways to implement the condition det Cab = −1 into
LC. One possible procedure is to introduce new gauge freedom by defining Cab = 1√−g

gab,
with gab an arbitrary symmetric tensor in the world sheet of signature {+,−} and g := det gab

(note that det( 1√−g
gab) = −1 and Cab = √−ggab). The new gauge freedom is Weyl

invariance, gab �→ 
(τ, σ )gab. This new gauge freedom compensates for the fact that gab has
three components whereas Cab had only two. The result is the familiar nonlinear σ model
Lagrangian [21, 22]7 for bosonic string theory,

Lσ = 1
2

√−ggab∂ax∂ax. (79)

It is well known that at the classical level one can eliminate gab, which are auxiliary variables
in (79), by plugging their own EOM into (79). The result is the Nambu–Goto Lagrangian.
However, from the quantum-mechanical view, the issue is more delicate. Instead of eliminating
gab via its EOM, one should perform a Feynman path integral, and use the standard Fadeev–
Popov procedure to deal with the local symmetries and gauge fixing. When this is done
correctly [18], one finds that there is a conformal anomaly unless the target-space dimension
is D = 26. But even in 26 dimensions, it is not yet clear whether off mass-shell fluctuations
of the Nambu–Goto and the nonlinear σ -model actions contribute in the same way, say into
string partition function. As we are interested here only in classical level description we will
not pursue this point further.

The second procedure consists in enforcing det C = −1 with a Lagrange multiplier. One
modifies the Lagrangian (77) so that the new Lagrangian is

L̃C = 1
2Cab∂ax∂bx + λ(t − 1), (80)

where t := √− det Cab (the square root is introduced for a technical convenience). Since the
first term in (80) is already a scalar density, the transformation properties of the multiplier
λ must also be those of a scalar density, i.e. δCλ = ∂a(ε

aλ). Using the fact that Cab have
become auxiliary variables for (80), we obtain from their own EOM that Cab = 1

λt
∂ax∂bx,

and therefore t is determined as

t = 1√
λ

(− det ∂ax∂bx)
1
4 . (81)

Plugging this result into (80), we get

L̄C = 2
√

λ(− det ∂ax∂bx)
1
4 − λ. (82)

7 Actually the name string (nonlinear σ ) model Lagrangian is a little unfair, since the Lagrangian (79) was discovered
independently by several researchers. But in our view it is a bit clumsy to talk about the Brink–Di Vecchia–Howe–
Deser–Zumino–Polyakov Lagrangian.
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Now the multiplier λ has turned an auxiliary variable. Its EOM determines λ =
(−det ∂ax∂bx)

1
2 . Substitution of this result into (82) yields the Nambu–Goto Lagrangian

LNG = (− det ∂ax∂bx)
1
2 . (83)

This again reconfirms the fact that on mass-shell Lσ
∼= LNG.

6.2. Further considerations

There is a strong parallelism between our way of obtaining the world-sheet general covariance
and the approach [23] to general relativity out of the requirement of self-consistency of the
coupling of the energy–momentum tensor of an initially Minkowskian theory to a massless
spin-2 field. The presence of the coupling term produces changes in the energy–momentum
tensor which in its turn redefine the coupling term, making it nonlinear in the spin-2 field.
An interaction procedure is set to work and the final result is the appearance of the metric
tensor field and general covariance. In our case, the Lagrange multipliers Bab play the role of
the spin-2 field. A self-consistency requirement also appears because the conserved current
for world sheet translation invariance has changed due to the presence of the new term with
the multipliers. In fact in the DWF, we enforce all the components of the current to become
constraints, and thus the Lagrange multipliers Bab are in fact coupled to the energy–momentum
tensor. The difference is that in our case, due to the particular structure of the current, we end
up with a density tensor field Cab of weight −1 that must satisfy det Cac = −1.

Let us elaborate a bit more on the requirement det Cab = −1. This condition is crucial
for our purposes. In fact we have found the fulfillment of this condition for configurations
of Cab around the flat spacetime metric and we have checked that the extension of this result
to any configuration is fully compatible with gauge freedom. We could also argue that since
we have found only two degrees of freedom—those of traceless symmetric Bab—around the
flat spacetime metric, to preserve this number we must accept that the components of Cab

are constrained by a condition of the type f (Cab) = constant. If we make the reasonable
assumption that this condition is geometrical—since the Lagrangian (83) already is—we
conclude that it should be a scalar under diffeomorphisms. But the only scalar we can
construct out of the components of the tensor density Cab is just its determinant, and to fix its
value we need only to consider the configurations around hab.

It is remarkable that as a way to perform the covariant quantization of the bosonic string,
Kato and Ogawa [24] used essentially the Lagrangian (80) as a Lagrangian equivalent to
(79). On the other hand, Siegel [25], see also [26], used the extended Lagrangian (67) with
the specific requirement det Cab = −1. In our approach (67) and (80) are consequences of
gauging the world sheet rigid translational symmetry of the Lagrangian (56).

Finally let us stress that the dimensionality of the world sheet plays a crucial role in
our derivation of the Nambu–Goto Lagrangian (83) through gauging the rigid world sheet
translational symmetry (57). It is only when the world sheet is two dimensional that the
Lagrange multipliers are constrained so as to satisfy an additional condition which eventually
leads to the requirement det Cab = −1.

7. Conclusions

Let us summarize our findings. Our starting point is a non-gauge theory, defined by a regular
Lagrangian Lng. We assume that in the phase space formulation such a theory has a Lie algebra
of time-independent constants of motion. Next we enforce these constants of motion as first
class constraints by adding them to the Hamiltonian with a set of Lagrange multipliers. Then
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Lng(q, q̇,p) = pq̇ −H(p, q) {Ca,Cb} = f c
abCc

Lng ↔ H

Le(q, q̇,p,λ) = pq̇ −H(p, q) − λaCa(p, q)

G := a(t)Ca

δ ξi = ωij∂G/∂ξj , δ λa = D0
a(t)

D0 ξ
i = ωij∂H/∂ξj , Ca = 0 δ Le = dF/dt

D0 q
i = ∂H/∂pi ⇒ p = P (q, q̇,λ)

Lλ(q, q̇,λ) = Le(q, q̇,p,λ)|p→P δλq
i = (δ qi)|p→P , δλλ

a = δ λa

(D0 pi = −∂H/∂qi)|p→P , Ca|p→P = 0 δλLλ = d
dt(F|p→P )

Ca(q,P (q, q̇,λ)) = 0 ⇒ λ = Λ(q, q̇,λ)

L(q, q̇) = Lλ(q, q̇,λ)|λ→Λ δLq
i = (δλqi)|λ→Λ

δLL = d
dt(F|p→P,λ→Λ)

{Ca,H} = 0

∃ invertible LM

(∂Le/∂p)|p→P = 0

Figure 1. The sequence diagram summarizing the basic logical steps leading from Lng to L. The
abbreviation LM stands for Legendre map while F denotes some phase-space function which is
linear in ε and its derivatives.

we perform the inverse Legendre transformation to end up with a new (extended) Lagrangian
Le whose configuration space now includes the Lagrange multipliers as new variables. We then
observe that this new theory has gauge symmetries and that the gauge group is generated by the
constraints, as expected. We also observe that in general the new variables are auxiliary and
that they can be further eliminated from the formalism by plugging into the new Lagrangian
their determination through their own equations of motion. This yields the final gauge-
invariant Lagrangian L. This last step may be problematic with regard to quantization because
the final theory will in general be of non-polynomial nature. Another option is to enlarge
the theory with the addition of new gauge-invariant terms that make these auxiliary variables
dynamical. The passage from Lng to L is schematically illustrated in the sequence diagram in
figure 1.

In the special case of relativistic field theories we have noticed that our program is best
carried out if the canonical setting is taken along the lines of the De Donder–Weyl approach.
Such formalism is particularly suitable because it keeps manifest the Lorentz invariance from
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the very beginning. The simplicity with which this gauging procedure can be performed
within this formalism is remarkable.

We have illustrated the DWF by applying it to the case of the N -component complex scalar
field transforming under the SU(N) fundamental representation but we could have done the
same, e.g., for the real-valued field multiplet in the SO(N) fundamental representation, for
the spinorial case, etc. It should be, nevertheless, noted that the role of the DWF is purely
instrumental, and that once the Lagrangian for the gauge theory has been obtained (see, for
instance, equation (55)), one can proceed either with the Lagrangian or with standard canonical
methods, without having to rely again on the DWF.

As another relevant example we have derived the Nambu–Goto Lagrangian for the
closed bosonic string by gauging the world sheet rigid translational symmetry of a non-
gauge Lagrangian. Our strategy has again relied on the DWF and it entailed an iteration
procedure very close to the approach to Einstein’s general theory of gravitation [23] in which
a consistency argument on the coupling of a massless spin 2 field with the total energy–
momentum tensor (including matter fields) yields ultimately the Einstein–Hilbert action. It
should be, however, stressed that because in our reasonings the dimensionality of the world
sheet has played a crucial role, it is not yet clear if a similar iterative procedure can be applied,
e.g. to relativistic Dirac–Nambu–Goto membranes (or p-branes).

The above-considered examples clearly indicate that the gauge principle, i.e. the gauging
of a rigid group of symmetries, can be alternatively recast in the language of constrained
systems with the gauge fields appearing first as Lagrange multipliers for the enforcement of
the constants of motion as constraints. The rationale of the procedure is based on the fact
that rigid symmetries are generated by constants of motion, whereas gauge symmetries by
first class constraints. Thus to gauge a group of rigid symmetries is tantamount to enforce
the generating constants of motion as constraints. Note also that the role of the gauge
fields as multipliers is temporary, because after the implementation of the inverse Legendre
transformation they typically become auxiliary variables. Finally, when the Lagrangian is
modified with new gauge-invariant additions to provide for kinetic terms for the gauge fields,
they become dynamical variables on their own.

We notice also that the constraints Ca, directly originated from the former constants
of motion of the nongauged theory, are primary constraints, but that does not mean that our
framework is limited to this kind of constraints and cannot give rise to secondary constraints. In
contrast, the examples provided in section 5 show that, due to the presence of the kinetic terms
for the gauge fields—which are the former Lagrangian multipliers—in the final Lagrangian,
secondary constraints may arise, as it is indeed the case for the Yang–Mills gauge theories.

With the benefit of hindsight, we observe that this route of enforcing constants of motion
as constraints could have been taken from the very beginning as an alternative way to the gauge
principle, because at the time when the Yang–Mills theory was formulated, the foundations
and development of the theory of constrained systems were already in place.

We believe that the presented formulation can also be conveniently applied in the ’t Hooft
program [27] where the extended Lagrangians (3) formulated with the help of constants of
motion have played a pivotal role in the construction of emergent dynamical systems [28, 29].
This issue would deserve further investigation.
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